Introduction to HDM-4

Henry Kerali
Lead Transport Specialist
The World Bank
Transport and Development

- Transport sector is vital for economic & social development
- Roads constitute the largest component of transport
- Roads require a balance of:
 - Maintenance (or Preservation)
 - Development (or Improvement)
- Objective of Road Management
 - Consistent and Rational Policy Objectives
 - Sufficient and Reliable Funding
 - Effective Procedures & Management Tools
HDM-4 Objectives.

Economic basis for selecting investment alternatives

Road standards

Pavement standards

Alignments
HDM-4 Objectives

Minimize Road Agency and Road User Costs

- Non-motorized transport facilities
- Traffic congestion
- Vehicle emissions
- Travel times
- Transport costs
- Road accidents
History of the HDM model

de Weille 1966 → Highway Cost Model 1971 → Kenya Study 1971-75

Caribbean Study 1977-82
India Study 1976-82
Brazil Study 1975-84

HDM-II 1981 → HDM-III 1987

HDM-IV 2000 ISOHDM

RTIM (TRRL)
RTIM2 (TRL)
RTIM3 (TRL)
HDM-4 Concept

- Predicts road network performance as a function of:
 - Traffic volumes and loading
 - Road pavement type and strength
 - Maintenance standards
 - Environment / Climate

- Quantifies benefits to road users from:
 - Savings in vehicle operating costs (VOC)
 - Reduced road user travel times
 - Decrease in number of accidents
 - Environmental effects
Optimum Transport Costs

Cost

Total

Optimum

Road User

Road Works

Design Standards
Purpose:

To optimise the overall performance of the network over time in accordance with POLICY OBJECTIVES and within budgetary constraints.

Typical objectives:

- Minimise transport costs
- Preserve asset value
- Provide and maintain accessibility
- Provide safe and environmentally friendly transport
Life Cycle Costs

Road Agency Costs
- Management, Operations
- Labor, Equipment, Materials
- Land acquisition
- Maintenance and Rehabilitation

Road User Costs
- Vehicle operation
- Travel time
- Road accidents
Comparison of Project Alternatives

Discounted RAC
(Road works + RUC)

Without Overlay

With Overlay

End of Analysis

NPV
Comparison of Project Alternatives

Discounted RAC

Cost of Paving

Without Paving

RUC

Project Life (years)

End of Analysis

NPV
Life Cycle Analysis

Input Data

1. Predict Road Deterioration
2. Predict Road Work Effects
3. VOC, Accident & Time costs
4. Discount Annual Costs & Compare

Output: NPV, IRR, ...

Repeat for all years
Road Deterioration

- Predict long term pavement performance
- Predict effects of maintenance standards
- Calculate annual costs: Road Agency + Road User

![Road Condition vs. Time (years) or Traffic Loading](chart.png)

- Road Condition:
 - Good
 - Poor

- Time (years) or Traffic Loading

- Maintenance Standard
- Rehabilitation
- Pavement Performance Curve
Pavement Performance

Pavement Types modelled:
- Bituminous (AC, ST, etc.)
- Unsealed (Gravel, Earth, Sand, etc.)
- Concrete (JPCP, JRCP, CRCP, etc.)
- Block (Bricks, etc.)

Models from pavement performance experiments in:
- Brazil, Kenya, India, South Africa
- France, USA, Sweden, Finland, Australia
Principles Of Deterioration Models

- Models are structured empirical
- Individual distresses modelled separately
- Relationships are incremental and recursive
 \[dY = K a_0 f(X_1, X_2, X_3, \text{etc}) \]
- Modelled sequentially through to roughness
- Maintenance intervention at end of each year
ICA = \(K_{cia} \{ CDS^2 \cdot a_0 \exp[a_1 SNP + a_2 (YE4/SN^2)] + CRT \} \)

- **ICA**: time to cracking initiation, in years
- **CDS**: construction quality
- **SNP**: structural number of pavement
- **YE4**: traffic loading
- **K_{cia}**: calibration factor
- **CRT**: effect of maintenance
All Cracking Progression

\[d\text{ACA} = K_{\text{cpa}} \left(\frac{\text{CRP}}{\text{CDS}} \right) z_A \left[(z_A \ast a_0 \ast a_1 \ast \delta t_A \ast \text{YE4} \ast \text{SNP}^a_2 \right. \\
\left. + \text{SCA}^{a_1} \right)^{1/a_1} - \text{SCA} \]
Pavement Deterioration Concept

- **Area of Cracking**: Time
- **Rut depth**: Time
- **Water ingress**: Lower strength
- **Faster deformation**: Uneven surface
- **Uneven Surface**: Spalling, Potholes, Patches
- **Spalling**:
- **Potholes**:
- **Patches**:
- **Further cracking**: ROUGHNESS

Diagram elements include:
- **Roughness**: Central node
- **Water ingress**: Node connected to ROUGHNESS
- **Faster deformation**: Node connected to ROUGHNESS
- **Uneven surface**: Node connected to ROUGHNESS
- **Shear**: Node connected to ROUGHNESS
- **Patches**: Node connected to ROUGHNESS

Graphical elements show directional relationships and timelines.

Pavement deterioration concepts include:
- Spall
- Pothole
- Uneven surface
- Patches
- Water ingress
- Rut depth
Concrete Roads

- Joint Spalling
- Punch outs
- Cracking
- Faulting
- Slab failures
- Riding Quality

Models From
- USA
- Chile
Predicted defects:

- Cracking
- Ravelling
- Edge Break
- Potholes
- Riding Quality
- Skidding
Bituminous Road Deterioration.
Bituminous Road Deterioration
Unsealed Roads
Unsealed Road Deterioration
Unsealed Road Deterioration ...
Road Work Classification

Preservation

- **Routine**
 - Patching, Edge repair
 - Drainage, Crack sealing

- **Periodic**
 - Preventive treatments
 - Rehabilitation
 - Pavement reconstruction

- **Special**
 - Emergencies
 - Winter maintenance

Development

- **Improvements**
 - Widening
 - Realignment
 - Off-carriageway works

- **Construction**
 - Upgrading
 - New sections
Road Works
Road Work Effects

Condition

Traffic / Time

Reconstruct

Overlay
Road User Effects
RUE Components

- MT Vehicle operating costs (VOC)
- MT Travel time costs (TTC)
- NMT Time and operating costs (NMTOC)
- Accident costs (AC)

\[
RUE = RUC + \text{Emissions} + \text{Energy} + \text{Noise}
\]
\[
RUC = VOC + TTC + NMTOC + AC
\]
Road User Effects

- Vehicle operating costs
 - fuel, oil, tyres, parts consumption
 - vehicle utilisation & depreciation
- Travel time
 - passengers
 - cargo
- Road accidents
- Non-Motorized Transport
- Energy consumption
- Vehicle emissions & noise
RUE Features in HDM-4

- Effects of traffic congestion on speed, fuel, tyres and maintenance costs
- Non-motorised transport modelling
- Effects of road works on users
- Traffic safety impact
- Vehicle emissions impact
- Vehicle noise impact
Motorised Vehicles
Impact of Road Condition on VOC

- Road Condition (IRI)
 - Good
 - Poor

- Road User Costs ($/veh-km)
 - Car
 - Pickup/utility
 - Bus
 - Heavy Truck
 - Rickshaw
Non-Motorised Transport
Role of HDM-4

<table>
<thead>
<tr>
<th>Management Function</th>
<th>HDM-4 Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Strategy Analysis</td>
</tr>
<tr>
<td>Programming</td>
<td>Programme Analysis</td>
</tr>
<tr>
<td>Preparation</td>
<td>Project Analysis</td>
</tr>
</tbody>
</table>
Road Management Functions

📍 Planning
- Setting standards and policies
- Long term estimates of expenditure

📍 Programming
- Medium term work programmes

📍 Preparation
- Detailed project design and work packaging

📍 Operations
- Implementation of works in field
HDM-4 Applications

- Road sector policy studies
- Strategic planning of road network development, improvement & maintenance
- Determination of funding requirements
- Preparation of multi-year road work programmes
- Economic appraisal of individual road projects
- Research studies
 - Road pricing
 - Vehicle regulations
 - Pavement design standards
Standards & Policies

- Road pricing
 - road use costs (to define fuel levies)
 - congestion charges
 - weight-distance charges
- Vehicle regulations
 - axle load limits
 - energy consumption, vehicle emissions & noise
- Engineering Standards
 - sustainable road network size
 - pavement design and maintenance standards
Strategy Analysis

Analysis of entire road networks to determine funding needs and predict performance under budget constraints

Objectives:

- Determine budget allocations for road maintenance and improvement
- Prepare work programs
- Determine long term network performance
- Assess impact on road users
Strategic Analysis Approach

Road Network

Matrix

Resource Constraints

Preservation Evaluation

Optimisation Module

Optimal Strategy under Budgetary Constraints

Revenues, Sector budgets

Developmen t Candidates

G F P
H
M
L
Effect of budget levels

Primary Roads

Average Roughness (IRI)

Annual Budget

- $10m
- $15m
- $20m

Target = 3.5 IRI
Budget Allocations

Average Roughness (IRI)

- **Feeder Roads**: $30m/yr
- **Secondary Roads**: $35m/yr
- **Primary Roads**: $20m/yr
Optimal budget requirements

US $ m/year.

- Development
- Improvement
- Periodic
- Routine

Years 2003-2006
Programme Analysis

Objective: prioritise candidate road projects in each year within annual budget constraint

Annual budgets obtained from strategic maintenance plan.
Use specified standards to screen network & identify candidate projects, e.g.

- road sections which exceed specified condition
- roads with inadequate capacity
- pavements which need strengthening
- upgrade pavements with high traffic volumes
Procedure ..

- Determine maintenance or improvement options
- Specify budget limits & periods
- Optimise using selected objective
- Produce optimal list of projects for budget period
Work Programme Output

<table>
<thead>
<tr>
<th>Priority Rank</th>
<th>Road Section</th>
<th>Length (km)</th>
<th>Province or District</th>
<th>Type of Road Work</th>
<th>Scheduled Year</th>
<th>Cost ($m)</th>
<th>Cumulative S$m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N1-2</td>
<td>20.5</td>
<td>2</td>
<td>Resealing</td>
<td>2003</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>2</td>
<td>N4-7</td>
<td>23.5</td>
<td>7</td>
<td>Overlay 40mm</td>
<td>2003</td>
<td>10.9</td>
<td>16.3</td>
</tr>
<tr>
<td>3</td>
<td>N2-5</td>
<td>12.5</td>
<td>5</td>
<td>Reconstruct</td>
<td>2003</td>
<td>8.6</td>
<td>24.9</td>
</tr>
<tr>
<td>4</td>
<td>R312-1</td>
<td>30</td>
<td>4</td>
<td>Widen 4 lane</td>
<td>2003</td>
<td>31.4</td>
<td>56.3</td>
</tr>
<tr>
<td>5</td>
<td>R458-3</td>
<td>36.2</td>
<td>3</td>
<td>Overlay 60mm</td>
<td>2003</td>
<td>16.3</td>
<td>72.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N4-16</td>
<td>32.1</td>
<td>6</td>
<td>Reconstruct</td>
<td>2004</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>2</td>
<td>R13-23</td>
<td>22.4</td>
<td>4</td>
<td>Overlay 40mm</td>
<td>2004</td>
<td>9.7</td>
<td>32.5</td>
</tr>
<tr>
<td>3</td>
<td>N521-5</td>
<td>45.2</td>
<td>2</td>
<td>Widen 4 lane</td>
<td>2004</td>
<td>41.3</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N1-6</td>
<td>30.2</td>
<td>4</td>
<td>Resealing</td>
<td>2005</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>N7-9</td>
<td>17.8</td>
<td>3</td>
<td>Overlay 60mm</td>
<td>2005</td>
<td>9.2</td>
<td>17.4</td>
</tr>
<tr>
<td>3</td>
<td>F2140-8</td>
<td>56.1</td>
<td>1</td>
<td>Reconstruct</td>
<td>2005</td>
<td>34.9</td>
<td>52.3</td>
</tr>
</tbody>
</table>
Project Appraisal

Project types
- New construction, upgrading
- Reconstruction, resealing
- Widening, lane addition
- Non-Motorised Transport lanes

Economic indicators
- Net Present Value (NPV)
- Economic Rate of Return (ERR)
- Benefit Cost Ratio (BCR), NPV/C
- First Year Rate of Return (FYRR)
Project Level Outputs

- Sensitivity analysis results
 - Scenario analysis
 - Road condition indicators
 - Road user cost details
 - Energy & emissions
HDM Technology Set

Knowledge Base

Software

Models

RDWE

SEE

RUE
Conclusions – Why HDM-4?

- Transparency of analysis
- Life cycle analysis capable of:
 - Short, Medium & Long term analyses
 - What-if analysis
- Internationally accepted analysis framework
- Availability of technical expertise
- Local calibration
Web sites:

http://hdm4.piarc.org
http://www.bham.ac.uk